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Abstract - A main result that has been recently 

obtained  is a new and deeper understanding of a 

region about the Moon where weak capture occurs, 

with significant applications. This region has been 

known to exist since 1986 by this researcher, and has 

important applications for its use in obtaining a new 

type of transfer to the Moon, using ballistic lunar 

capture(i.e. no Delta-V). One of these transfers was 

demonstrated by this researcher in 1991 with the 

rescue of the Japanese lunar spacecraft Hiten. Another 

was also used in 2004 for ESA’s SMART-1 spacecraft.  

However, a deep understanding of this region has been 

elusive. Now, through this research effort presented in 

this paper, the nature of the weak capture region, 

called the weak stability boundary, has been found. It 

is shown to support only resonance motions about the 

Earth, in resonance with the Moon, which chaotically 

transition from one type to another. This is a 

surprising observation and significant. It has been 

uncovered through the use of special visualizations on 

so called Poincare surfaces of section which have an 

exquisite geometric structure. The weak stability 

boundary itself has been shown to be an interesting 

dynamic region existing within a chaotic sea about the 

Moon in the phase space.  These results have already 

led to an understanding of a transfer type: ballistic 

escape from the Earth-Moon system. First observed in 

1990, they were not understood. Now, much more is 

known about their dynamics. These transfers may 

have potentially important applications, especially for 

future Mars missions. New types of low energy orbits 

are also described about the Moon which enable 

inclination changes by a factor of 12 less Delta-V than 

traditional orbits, enabling new lunar architectures in 

support of a lunar base.  

 

 

 

 

 

 

 

 

I. INTRODUCTION 

 

A new type of transfer from the Earth to the 

Moon was discovered by Belbruno and used in 

1991 to enable a Japanese spacecraft, Hiten,  to 

successfully reach the Moon.  This transfer has 

the distinguishing property that it uses ballistic 

capture near the Moon., sometimes referred to as 

a ballistic capture transfer [1,2]. This means that 

the spacecraft goes into orbit about the Moon 

automatically, without the use of rockets to slow 

down. This is unlike the more traditional 

Hohmann transfer that needs to use a substantial 

amount of fuel from it’s rocket engines to 

achieve lunar orbit. For this reason, the ballistic 

capture transfers are called low energy. The 

SMART-1 spacecraft of ESA used another type 

of ballistic capture transfer in 2004 [2]. The 

transfer used by Hiten is particularly important 

since it’s time of flight is only about 3 months, 

and it can deliver twice as much payload into 

lunar orbit as compared to the Hohmann transfer, 

for the same cost.  For the US return to the Moon 

to construct a lunar outpost, such a transfer 

would be important for cost reductions for 

massive payloads not requiring human 

passengers. 

 

It turns out that ballistic capture is equivalent to 

something called ‘weak capture’, which is a form 

of capture at the Moon, or any other secondary 

body orbiting a larger one (e.g. Europa orbiting 

Jupiter), where the two-body energy, E, of a 

spacecraft(SC), w.r.t. the Moon is negative(or 

zero) and where the capture is temporary. This 

means that the motion about the Moon is 

unstable. The spacecraft will be captured about 



the Moon for a short amount of time, then it will 

escape the Moon.  In the weak capture state, the 

spacecraft is in the transitional boundary 

between capture and escape. The energy E is less 

than zero for a finite period of time. One may 

think that this form of capture is not good for 

applications since it is unstable – but it turns out 

to be ideal, since only a tiny amount of 

stabilization Delta-V is needed to achieve a 

relatively stable orbit [1,2]. This is carefully 

studied in [4]. Thus, understanding where weak 

capture can occur about the Moon is very 

important. This region was mapped out by 

Belbruno in 1986 [1,2]. It is called a weak 

stability boundary, and is a region in position-

velocity space. It can be thought of as a 

generalization of the Lagrange points. These are 

five locations about the Moon where a 

spacecraft, that is fixed w.r.t. the Earth and 

Moon, will remain fixed there. In particular, the 

forces of gravity on the spacecraft will be 

balanced together with the outward centrifugal 

force. However, in the weak stability boundary, 

these forces will be balanced for a moving 

spacecraft. So, instead of just getting five points, 

one gets a complicated region. A spacecraft in 

this region is weakly captured by the Moon.  

Ballistic capture transfers from the Earth to the 

Moon are obtained by finding a transfer that goes 

to the weak stability boundary near the Moon. 

To be in this weak capture region at a particular 

location near the Moon, the spacecraft has to be 

moving with a critical velocity.  

 

The WSB is very good for applications, but 

understanding its dynamic mathematical nature 

has been very difficult since this region gives 

rise to chaotic motions where the trajectory is 

very sensitive and unstable. Although one can 

locate the approximate location of this region 

with the computer, getting a deeper 

understanding of it is much more challenging. 

One fact was discovered in 1990 by Belbruno by 

numerical simulations: When a trajectory is in 

weak capture near the Moon, then in forward 

time and backward time, the spacecraft 

transitions onto an elliptic type orbit about the 

Earth that was in resonance with the Moon. That 

is, if the period of motion of the SC about the 

Earth is TS and the period of the Moon is TM, 

then mTS = nTM, where m,n are positive 

integers(1,2,3….). We call these ‘m:n orbits’ – 

which means that when SC goes around the 

Earth m times, the Moon goes around the Earth n 

times.  Thus, the spacecraft would do a ‘hop’, or 

resonance transition, from one resonance orbit to 

another via weak capture.  

 

This motion was found to be analogous to that of 

comets which are m:n orbits about the Sun, in 

resonance with Jupiter, and this led to a paper by 

Belbruno and B. Marsden in 1997 to study the 

WSB of Jupiter for such comets [2].  In all cases, 

it was found that such resonance hopping comets 

passed through weak capture near Jupiter in it’s 

WSB. (Examples of such comets are Gehrels 3 

or Oterma which hop between 2:3 and 3: 2 

orbits.)  Work by Koon et. al. in 2000 found 

numerically that a complicated network of 

dynamic channels (shaped like tubes) played a 

role in the hop process at Jupiter [8]. Such a 

network of tubes was conjectured by Belbruno in 

1994 to be associated with the WSB at the 

Moon, under restrictive conditions, and 

associated with the Hiten transfer [1]. Beyond 

this work, little was known of the WSB and in 

particular, its connection with resonance 

motions.  

 

In Section II, we describe a way to visualize the 

WSB about the Moon, under general conditions, 

and see that it is intimately associated with hop 

motions from one resonance to another by 

visualizing special slices of the position-velocity 

space, called Poincare sections. It is generally 

found that the WSB exists within a chaotic sea of 

points where there exists islands of invariant 

curves, of invariant tori, associated to resonance 

motions.  The correlation dimension is also 

mentioned. Applications are discussed in Section 

III to Mars missions using low energy escape 

transfers and for special low fuel orbital motion 

about the Moon. This work is supported by the 

NASA AISR program. 

 

 
II. VISUALIZATION OF THE WEAK CAPTURE REGION  

 

 

We very briefly describe the visualization of the 

Poincare sections, to just give an idea of how it 

is done, and show some main results. The details 

are contained in [5]. 

 

The model we use to numerically simulate the 

motion of the spacecraft is given by the planar 

circular restricted three-body problem. This 

defines the motion of SC, of zero mass, on the 

plane of motion of the Earth and Moon, which 

are assumed to move in purely mutual circular 

orbits about their common center of mass, 



approximately at the Earth itself. We use a 

rotating coordinate system, (x,y), which rotates 

uniformly with the Earth and Moon, where the x-

axis is long the Earth-Moon line. The 

coordinates are scaled so that the Earth is at the 

location (-m, 0), and the Moon is at (1-m, 0), 

where m=.0123 is the approximate mass ratio of 

the Moon to the Earth. In this system the Earth 

and Moon are fixed.  The differential equations 

for the motion of SC are well known in the 

literature(See [1]). They can be written as a 

second order system (i.e. second order 

derivatives w.r.t. time, t, ) of two differential 

equations for x, y:  

 

DDx = F(dx/dt,dy/dt,x,y),  

DDy = G(dx/dt,dy/dt,x,y), 

               

where D=d/dt, and F,G are functions of 

dx/dt,dy/dt,x,y,. We let   Z = (x,y,dx/dt,dy/dt), 

and Z(t) be a general solution of the differential 

equations, where t is defined over the interval 

[t1,t2], t1 < t2. Associated to this system is the 

general energy of SC, called the Jacobi energy 

function, J(Z), which is a constant along 

solutions, J(Z(t)) = C. C is called the Jacobi 

constant. The motion of SC can be restricted to 

the surfaces Q = {J =C}. which are three-

dimensional in the four-dimensional phase space 

Z, where Q = Q(C).  

To view the dynamics of SC to get a global 

understanding of it’s motion, we make special 

two-dimensional slices through Q, for different 

values of C. We choose C < C1, where C1 = 

3.184163,  the value that J has at the exterior 

collinear Lagrange point w.r.t. the Moon, L1. For 

C < C1, the Hill’s region of allowable motion of 

SC implies that SC is minimally energetic 

enough to escape the Earth-Moon system. As C 

decreases from C1, SC becomes increasingly 

energetic. We are interested in decreasing C and 

seeing what happens to the global dynamics of 

SC, on the special two-dimensional slices 

through Q. These slices are defined by 

normalizing them to the 2:1 resonance orbit 

initial conditions Z(0), which turn out to be a 

function only of the osculating eccentricity e of 

SC. The two-dimensional section is labeled S 

and defined where S = {y = 0, Dy > 0}. These all 

called Poincare sections, and the flow of the 

differential equations is transversal to S = S(C).  

We now look at some pictures of S(C), in 

suitable coordinates, and see what the dynamics 

is for SC.  To make them, hundreds of thousands 

of intersections are made with the numerically 

integrated trajectory of SC on S, and the 

resulting points of intersection are recorded. 

After this is done, complex patterns emerge 

showing the dynamics of SC. The first one is for 

C = 3.181768 shown in Figure 1. This 

corresponds to e = 0.  One sees resonance islands 

for different resonances: 4:1, 5:2, 7:3, 2:1. The 

islands consist of invariant curves formed from 

invariant tori. The many points seen on the 

section without a clear pattern, define chaotic 

motion for SC, and collectively are called a 

chaotic sea. A blowup of part of this section is 

seen in Figure 2, showing the 2:1 resonance 

island structure. 

 

 

 

 

 
Figure 1  Section S for C = .1811768. Resonance islands are 

shown for 2:1, 4:1, 5:2, 7:3 orbits. 

 

 

 



 
Figure2   Magnification of 2:1 resonance island. 

 

 

The chaotic sea proves that SC can move 

between resonance islands freely, and perform 

resonance hops. This is an interesting result. The 

invariant curves form an extremely complicated 

invariant manifold network in the full phase 

space Z of infinitely many interwoven tubes. 

 

As C is further decreased the section changes 

considerably.  In Figure 3, C = 2.734978, 

corresponding to e=.7. In this figure, the chaotic 

sea has increased substantially, and the range of 

the hop motion is much larger, with fewer 

resonance types. It is interesting to note that only 

resonance hops seem to occur on S for a range of 

C [5]. 

 

 

 

 

 

 
Figure 3   Section for C = 2.734978 

 

 

 

 

Many more sections are described in [5], and 

collectively the dynamics of SC is understood 

w.r.t its resonance motion.  

 

 

We conclude this section with a visualization of 

the WSB. Using the definition of the WSB from 

[1], which, on energy surfaces Q, we satisfy H < 

0 (or =0), and d(rm)/dt = 0, where rm is the 

distance from SC to the Moon , we find its 

extension with d(rm)/dt > 0, shown in Figure 4. 

The WSB itself lies on the horizontal x-axis 

through the middle of the plot that the extended 

WSB projects onto. 

 

 

  

 
Figure 4  The extended  WSB for C = 2.973425.  The green 

points with  HM = E < 0 represent the extended WSB. It 

exists within a chaotic sea near the Moon. This sea is allows 

SC to hop between different resonances and near the WSB.  

 

 

This is the first time this region has been 

visualized, and its complexity shows how closely 

resonance motion is associated to ballistic 

capture and the lunar transfer used by Hiten and 

SMART-1, as well as comets discussed earlier. It 

gives insights into intriguing motions for 

important mission applications. 

 

In [5], the correlation dimension is defined and 

used to estimate the fractal nature of the WSB, 

which gives further insights. 

 

 
III.  APPLICATIONS 

 

 

The ballistic capture transfer to the Moon, has 

proven itself to be a revolutionary approach to 

travel to the Moon, already having been 

demonstrated by two spacecraft, Hiten, and 

SMART-1. It’s ability to transport more mass to 

the Moon for about half the usual cost promises 

to be an important consideration for future 

missions to the Moon, especially for the 

construction of a lunar outpost.  The WSB 

enables these transfers to exist, and the results 

described in this paper, and more generally in 

[5], show that the WSB is closely tied together 

with resonance motions about the Earth in 



resonance with the Moon. Associated to these 

resonances is a complicated network of dynamic 

channels which weave throughout the phase 

space between the Earth and Moon. Although it 

has been known that dynamic channels exist for 

low energy transfers, their close connection to 

resonance behavior is new, as presented here. 

This gives an alternate perspective on such 

motion, and offers a promising new direction of 

study to pursue.  
 

The association of the WSB to resonance 

motions and the hop, in particular, between 

different resonance orbits about the Earth can be 

used not just for the purpose of weak ballistic 

capture at the Moon, but for ballistic escape from 

the Earth-Moon system, where no Delta-V is 

needed. This is discussed briefly in [2,5], and is 

currently being researched. However, the idea 

can be presented at this point. As we have 

discussed, if the gravity of the Sun is not 

modeled, then when a spacecraft is going around 

the Earth in an m:n orbit and encounters the 

WSB at the Moon for temporary weak capture, it  

generally exits onto another resonance orbit, say 

a i:j orbit, staying relatively close to the Earth-

Moon system. However, when the Sun’s gravity 

is modeled, it has the effect of causing the m:n 

orbit not to transition onto a bounded i:j orbit, 

but rather an unbounded trajectory which 

escapes the Earth-Moon system, after about 100 

days. That is, the Sun’s gravity pulls the i:j orbit 

apart into an unbounded trajectory which, after 

escaping the Earth-Moon system, goes into an 

Earth-like orbit about the Sun.  One of these 

ballistic escape trajectories is seen in Figure 5. 

The spacecraft starts out in a 2:1 orbit, 

encounters the Moon’s WSB, then ballistically 

escapes the Earth-Moon system. 

 

 
Figure 5  A ballistic escape trajectory going from a 2:1 to an 

escape from the Earth-Moon system with no Delta-V.   

 

The very interesting observation is that when SC 

goes into an Earth-like orbit about the Sun, it 

turns out to also be a resonance orbit, but now in 

resonance with the Earth’s motion about the Sun.  

These ballistic escape transfers from the Earth, 

save about 1 km/s in Delta-V, which can be used 

to send payloads to Mars, after an additional 

Earth flyby, for much less propellant. Such 

payloads could be used as supply depots for 

missions on the way to Mars, or just to deliver 

payloads to Mars itself. These ballistic escape 

transfers were first noticed by Belbruno in 1990 

[2], but their connection to resonance motions is 

now uncovered, which should open up their 

utility for applications.   

 

It is finally mentioned that the existence of very 

low energy orbits about the Moon was described 

in [4]. The results were obtained originally from 

an AISR project in 2006. These orbits can orbit 

the Moon for extended periods of time and 

change their inclination for a factor 12 less 

Delta-V than before, thus being potentially 

important for lunar mission architectures to 

deliver payloads into lunar orbit and onto the 

surface of the Moon at a substantially lower cost. 

They can also be used to increase the time in 

orbit of a lunar satellite for less fuel.  Such orbits 

have a high eccentricity and large apoapsis w.r.t 

the Moon, of about 40,000 km. They can stay in 

lunar orbit for long periods of time in order to 

also serve as an ideal communication system 

with the Earth and all points on the lunar surface. 

This offers a viable and less expensive 

alternative to using halo orbits about the 

collinear lunar L1, L2 points for a 

communication system, see [4].  
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